Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma - \{\square\})^*$ be a language.

- Let M be a TM such that for any string x:
 - If $x \in L$, then $M(x) = \text{“yes.”}$
 - If $x \notin L$, then $M(x) = \uparrow$.

- We say M accepts L.

\(^a\)This part is different from recursive languages.
Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is called a recursively enumerable language.\(^a\)
 - A recursively enumerable language can be generated by a TM, thus the name.\(^b\)
 - That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.
 - This algorithm may not terminate.

\(^a\)Post (1944).
\(^b\)Thanks to a lively class discussion on September 20, 2011.
Emil Post (1897–1954)
Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively enumerable.

- Let TM M decide L.
- Need to design a TM that accepts L.
- We will modify M to obtain an M' that accepts L.
- M' is identical to M except that when M is about to halt with a “no” state, M' goes into an infinite loop.
- M' accepts L.
 - If $x \in L$, then $M'(x) = M(x) = “yes.”$
 - If $x \not\in L$, then $M(x) = “no”$ and so $M'(x) = \uparrow$.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University
Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do not run into an infinite loop is recursively enumerable.
 - Just run it in a simulator environment.

- The set of C programs that contain an infinite loop is \textit{not} recursively enumerable (see p. 120).
Turing-Computable Functions

- Let \(f : (\Sigma - \{\perp\})^* \rightarrow \Sigma^* \).
 - Optimization problems, root finding problems, etc.
- Let \(M \) be a TM with alphabet \(\Sigma \).
- \(M \) computes \(f \) if for any string \(x \in (\Sigma - \{\perp\})^* \),
 \[M(x) = f(x). \]
- We call \(f \) a recursive function\(^a\) if such an \(M \) exists.

\(^a\)Kurt Gödel (1931).
Kurt Gödel (1906–1978)
Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are algorithms.a

• Many other computation models have been proposed.
 – Recursive function (Gödel), λ calculus (Church),
 formal language (Post), assembly language-like RAM
 (Shepherdson & Sturgis), boolean circuits (Shannon),
 extensions of the Turing machine (more strings,
 two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.

aKleene (1953).
Church’s Thesis or the Church-Turing Thesis (concluded)

• No “intuitively computable” problems have been shown not to be Turing-computable, yet.

• The thesis is a

 a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a computer is not capable of any computational task that a Turing machine is incapable of.

Alonso Church (1903–1995)
Stephen Kleene (1909–1994)
Extended Church’s Thesisa

• All “reasonably succinct encodings” of problems are \textit{polynomially related} (e.g., n^2 vs. n^6).
 – Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 – The \textit{unary} representation of numbers is not succinct.
 – The \textit{binary} representation of numbers is succinct.
 * 1001 vs. 111111111.

• All numbers for TMs will be binary from now on.

aSome call it “polynomial Church’s thesis,” which Lószló Lovász attributed to Leonid Levin.
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta : K \times \Sigma^k \rightarrow (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (kth) string.
A 2-String TM

\[\delta \]

\[\Rightarrow 1000110000111001110001110 \]

\[\Rightarrow 111110000 \]

\[\Rightarrow 111110000 \]
PALINDROME Revisited

• A 2-string TM can decide PALINDROME in $O(n)$ steps.
 – It copies the input to the second string.
 – The cursor of the first string is positioned at the first symbol of the input.
 – The cursor of the second string is positioned at the last symbol of the input.
 – The two cursors are then moved in opposite directions until the ends are reached.
 – The machine accepts if and only if the symbols under the two cursors are identical at all steps.
\[\delta \]

\[\text{ababbaabbaabbaabbbaba} \]

\[\text{ababbaabbaabbaabbbaba} \]

\[\text{ababbaabbaabbaabbbaba} \]
Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-tuple

\[(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)\].

 – \(w_iu_i\) is the \(i\)th string.
 – The \(i\)th cursor is reading the last symbol of \(w_i\).
 – Recall that \(\triangleright\) is each \(w_i\)'s first symbol.

• The \(k\)-string TM’s initial configuration is

\[
(s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon).
\]
Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.

- If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.

- If $M(x) = \uparrow$, then the time required by M on x is ∞.

- Machine M operates within time $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.

 - $|x|$ is the length of string x.

- Function $f(n)$ is a time bound for M.
Time Complexity Classes

• Suppose language $L \subseteq (\Sigma - \{_|\})^*$ is decided by a multistring TM operating in time $f(n)$.

• We say $L \in \text{TIME}(f(n))$.

• $\text{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.

• $\text{TIME}(f(n))$ is a complexity class.

 – PALINDROME is in $\text{TIME}(f(n))$, where $f(n) = O(n)$.

\(^{a}\text{Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).}\)
Juris Hartmanisa (1928–)

aTuring Award (1993).
Richard Edwin Stearnsa (1936–)

aTuring Award (1993).
The Simulation Technique

Theorem 2 Given any k-string M operating within time $f(n)$, there exists a (single-string) M' operating within time $O(f(n)^2)$ such that $M(x) = M'(x)$ for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$ of M by this string of M':

$$ (q, \triangleright w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft). $$

 - \triangleleft is a special delimiter.
 - w'_i is w_i with the first and last symbols “primed.”
 - It serves the purpose of “,” before.

\(^{a}\)The first symbol is always \triangleright.
The Proof (continued)

- The “priming” of the last symbol of w_i ensures that M' knows which symbol is under each cursor of M.\(^a\)

- We use the primed version of the first symbol of w_i (so \triangleright becomes \triangleright').
 - TM cursors are not allowed to move to the left of \triangleright (p. 20).
 - Now the cursor of M' can move between the simulated strings of M.\(^b\)

\(^a\)Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
\(^b\)Thanks to a lively discussion on September 22, 2009.
The Proof (continued)

- The initial configuration of M' is

$$
(s, \triangleright \triangleright'' x \triangleleft \triangleright'' \triangleleft \cdots \triangleright'' \triangleleft \triangleleft).
$$

- \triangleright is double-primed because it is the beginning and the ending symbol here.\(^a\)

\(^a\)Added after the class discussion on September 20, 2011.
The Proof (continued)

• We simulate each move of M thus:

 1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.
 - The transition functions of M' must also reflect it.
 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.
The Proof (continued)

• It is possible that some strings of M need to be lengthened (see next page).

 – The linear-time algorithm on p. 31 can be used for each such string.

• The simulation continues until M halts.

• M' then erases all strings of M except the last one.

• Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.

• The length of the string of M' at any time is $O(kf(|x|))$.

\(^{a}\)We tacitly assume $f(n) \geq n$.

\(\text{©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University}\)

Page 61
<table>
<thead>
<tr>
<th>string 1</th>
<th>string 2</th>
<th>string 3</th>
<th>string 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>string 1</td>
<td>string 2</td>
<td>string 3</td>
<td>string 4</td>
</tr>
</tbody>
</table>
The Proof (concluded)

• Simulating each step of M takes, per string of M, $O(kf(|x|))$ steps.

 – $O(f(|x|))$ steps to collect information from this string.

 – $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

• M' takes $O(k^2f(|x|))$ steps to simulate each step of M because there are k strings.

• As there are $f(|x|)$ steps of M to simulate, M' operates within time $O(k^2f(|x|)^2)$.
Linear Speedupa

Theorem 3 Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

aHartmanis and Stearns (1965).
Implications of the Speedup Theorem

- State size can be traded for speed.\(^a\)
- If \(f(n) = cn\) with \(c > 1\), then \(c\) can be made arbitrarily close to 1.
- If \(f(n)\) is superlinear, say \(f(n) = 14n^2 + 31n\), then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - *Arbitrary* linear speedup can be achieved.\(^b\)
 - This justifies the big-O notation for the analysis of algorithms.

\(^a\)\(m^k \cdot |\Sigma|^{-3mk}\)-fold increase to gain a speedup of \(O(m)\). No free lunch.

\(^b\)Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.
By the linear speedup theorem, any polynomial time bound can be represented by its leading term \(n^k \) for some \(k \geq 1 \).

If \(L \) is a polynomially decidable language, it is in \(\text{TIME}(n^k) \) for some \(k \in \mathbb{N} \).
- Clearly, \(\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1}) \).

The union of all polynomially decidable languages is denoted by \(\mathbb{P} \):
\[
\mathbb{P} = \bigcup_{k>0} \text{TIME}(n^k).
\]

\(\mathbb{P} \) contains problems that can be efficiently solved.
Space Complexity

- Consider a k-string TM M with input x.
- Assume non-\sqcup is never written over by \sqcup.\(^a\)
 - The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$, then the space required by M on input x is

\[
\sum_{i=1}^{k} |w_i u_i|.
\]

\(^a\)Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.
Space Complexity (continued)

• Suppose we do not charge the space used only for input and output.

• Let \(k > 2 \) be an integer.

• A \(k \)-string Turing machine with input and output is a \(k \)-string TM that satisfies the following conditions.
 – The input string is read-only.
 – The last string, the output string, is write-only.
 – So the cursor never moves to the left.
 – The cursor of the input string does not wander off into the \(\square \)s.
Space Complexity (concluded)

• If M is a TM with input and output, then the space required by M on input x is

$$
\sum_{i=2}^{k-1} |w_i u_i|.
$$

• Machine M operates within space bound $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.
Space Complexity Classes

- Let L be a language.

- Then

$$L \in \text{SPACE}(f(n))$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

- \text{SPACE}(f(n)) is a set of languages.
 - \text{PALINDROME} \in \text{SPACE}(\log n)a

- As in the linear speedup theorem (Theorem 3), constant coefficients do not matter.

\(^a\text{Keep 3 counters.}\)
Nondeterminism\(^a\)

- A nondeterministic Turing machine (NTM) is a quadruple \(N = (K, \Sigma, \Delta, s)\).
- \(K, \Sigma, s\) are as before.
- \(\Delta \subseteq K \times \Sigma \times (K \cup \{h, "yes", "no"\}) \times \Sigma \times \{←, →, −\}\) is a relation, not a function.\(^b\)
 - For each state-symbol combination, there may be multiple valid next steps—or none at all.
 - Multiple lines of code may be applicable.

\(^a\)Rabin and Scott (1959).
\(^b\)Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.
Nondeterminism (concluded)

- As before, a program contains lines of code:

\[
(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,
(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,
\vdots
(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.
\]

- In the deterministic case (p. 21), we wrote

\[
\delta(q_i, \sigma_i) = (p_i, \rho_i, D_i).
\]

- A configuration yields another configuration in one step if there exists a rule in \(\Delta \) that makes this happen.
Michael O. Rabina (1931–)

aTuring Award (1976).
Dana Stewart Scotta (1932–)

aTuring Award (1976).
Computation Tree and Computation Path

\[s \]

\[h \quad \text{“no”} \quad h \quad \text{“yes”} \]

\[\text{“yes”} \]
Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in “yes.”
 - It is not required that the NTM halts in all computation paths.\(^a\)
 - If $x \not\in L$, no nondeterministic choices should lead to a “yes” state.

- The key is the algorithm’s overall behavior not whether it gives a correct answer for each particular run.

- Determinism is a special case of nondeterminism.\(^a\)

 \(^a\)So “accepts” is a more proper term, and other books use “decides” only when the NTM always halts.
An Example

• Let L be the set of logical conclusions of a set of axioms.
 – Predicates not in L may be false under the axioms.
 – They may also be independent of the axioms.
 * That is, they can be assumed true or false without contradicting the axioms.
An Example (concluded)

• Let \(\phi \) be a predicate whose validity we would like to prove.

• Consider the nondeterministic algorithm:
 1: \(b := \text{true} \);
 2: \textbf{while} the input predicate \(\phi \neq b \) \textbf{do}
 3: \quad \text{Generate a logical conclusion of } b \text{ by applying one of the axioms; } \{\text{Nondeterministic choice.}\}
 4: \quad \text{Assign this conclusion to } b;
 5: \quad \textbf{end while}
 6: \quad \text{“yes”;}

• This algorithm decides \(L \).
Complementing a TM’s Halting States

- Let M decide L, and M' be M after “yes” \leftrightarrow “no”.
- If M is a deterministic TM, then M' decides \overline{L}.
- But if M is an NTM, then M' may not decide \overline{L}.
 - It is possible that both M and M' accept x (see next page).
 - So M and M' accept languages that are not complements of each other.